Microhardness evaluation of resin composites polymerized by three different light sources.

نویسندگان

  • Ihsan Hubbezoğlu
  • Giray Bolayir
  • Orhan Murat Doğan
  • Arife Doğan
  • Ali Ozer
  • Bülent Bek
چکیده

This study examined the surface microhardness of four kinds of resin composites with different fillers and resin matrices. Ten specimens of 2 mm thickness and 4 mm diameter of each resin composite were polymerized using a halogen light, a blue light-emitted diode, and a plasma arc unit. Microhardness evaluation was performed at top and bottom surfaces for each specimen using a Vickers microhardness tester. Furthermore, morphologies of the polished top surfaces of composites cured with blue light-emitted diode were observed using scanning electron microscopy. Results indicated that composites cured with halogen or blue light-emitted diode light yielded higher microhardness values, although it also appeared to depend on the type of composite cured. Plasma arc curing according to manufacturer's instructions yielded the lowest microhardness values for all the materials. Among the materials tested, the nanofilled resin composite displayed the highest microhardness values for each curing regime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Irradiation Distance on Microhardness of Resin Composites Cured with Different Light Curing Units

OBJECTIVES The aim of this study was to compare the microhardness of five different resin composites at different irradiation distances (2 mm and 9 mm) by using three light curing units (quartz tungsten halogen, light emitting diodes and plasma arc). METHODS A total of 210 disc-shaped samples (2 mm height and 6 mm diameter) were prepared from different resin composites (Simile, Aelite Aesthet...

متن کامل

The Effect of the Light Intensity and Light Distances of LED and QTH Curing Devices on the Hardness of Two Light-Cured Nano-Resin Composites

Background: Effective polymerization of the composite resin is essential to obtain long term clinical success and has a great importance obtaining improved mechanical properties. The purpose of this study was to measure the effect of the light intensity of LED and QTH curing devices in relation to the light distances, on the hardness (KHN) of two light cure nano-resin composite. Material and Me...

متن کامل

Hardness of composite resin polymerized with different light-curing units

Introduction: The degree of polymerization depends on the type of light-curing unit. The aim of this study was to compare the hardness of composite resin cured by LED and Halogen light curing units. Methods: In this experimental study, 20 cylindrical samples of Tetric Ceram composite were prepared. Half of them were cured with Ultralume 2 LED and the other half with Astralis 7 Halogen light ...

متن کامل

Mechanical properties of light-curing composites polymerized with different laboratory photo-curing units.

This study aimed to analyze the microhardness (KHN) and diametral tensile strength (DTS) of two hybrid resin composites (TPH Spectrum and Filtek Z250). To this end, the composites were polymerized with six laboratory photo-curing units (LPUs) and the results compared with an alternative polymerization method using conventional halogen light source in conjunction with additional polymerization i...

متن کامل

Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test

Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vicker...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dental materials journal

دوره 26 6  شماره 

صفحات  -

تاریخ انتشار 2007